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Spatial stability of the Daniels and Eagles profiles
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Abstract. Daniels and Eagles [1] obtained velocity profiles for exponential slender tubes. The spatial stability of
these profiles is examined using a quasi-parallel approach. Contrary to expectation the profiles turn out to be
stable.

1. Introduction

We shall be concerned with the stability to small disturbances of the Daniels and Eagles [1]
velocity profiles. Daniels and Eagles [1] studied viscous flows in exponential tubes of varying
radius. The flows were governed to a first approximation by a nonlinear ordinary differential
equation

1 1
G"+ G == G +4yGG' =0, (1.1)
n

where y = Aa, A =€R, H=¢"*, z = ex, H is the radius of the tube, n = r/H(z), r is the radial
coordinate, x is the downstream coordinate, a is a constant, € is a small parameter and Ris
the Reynolds number.

Equatijon (1.1) will be referred to as the DE equation and the associated solutions as the
DE profiles, velocities or flows. The case ¥ =0 corresponds to Poiseuille flow. As y changes
the flows change from Poiseuille flow to other flows. Daniels and Eagles [1] found multiple
solutions for both negative and positive values of y. We consider branch 1 of their solution
and carry out stability analysis for ¥ in the range |y|<6.

For large values of z, the theory became invalid due to the exponential variation
of the radius which was unbounded. This has since been modified and extended by
Eagles (2] so that the solution may be applied to a wide variety of ‘locally exponen-
tial’ tubes. He predicted that the DE profiles were good approximations for more general
slender tubes. An investigation into approximations to flow in slender tubes by Eagles
& Muwezwa [3] confirmed that the DE profiles were good approximations to slender
tubes.

Earlier studies by Eagles (4], Eagles and Weissman [5] and Eagles and Smith [6] show that
for channel flow, instabilities occurred at R = 215 for @ = 0.01 and R = 40 for a = 0.1, where
a is the semi-divergence angle of the channel. A similar pattern was expected for the DE
profiles. The behaviour of the profiles is examined as y varies by means of spatially growing
modes using quasi-parallel stability theory.
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2. Stream function equation

The stream function equation is derived from the Navier-Stokes equations with zero external
forces

_ _ 1 _
—+ U-VU=—;Vp+uV2U (2.1)

V-U=0 (2.2)

where U, p and p are the velocity, density and pressure of the fluid respectively, and v is the
kinematic viscosity.

For axisymmetric flows with cylindrical coordinates (', 8, x') and U = (u’,0,v’), a stream
function may be defined by

!

1oy’ , 1oy’
u'= T (2.3)

_— vl =
rax'’ r

This satisfies the equation of continuity (2.2). The variables are made non-dimensional as
follows:

x=x7, r='—TI, ¢=%, t=%, (2.4)
where T is the radius of the tube at x' =0 and M is the volumetric flow rate.

The non-dimensional stream function satisfies the equation

1a—'ﬂ+i(¢ 2y i)Dzwi(zt/u/f 30, — )~ 5

r ot r2 T oX X 9r r3 xVxx xtrr rtrx r4 xtr

= %(%D —%(w,n ) % v~ % W), (2.5)
where R = M/Lv is the Reynolds number and
2 2

prod 12, O 2
The boundary conditions are

=00 as r—0,

Y, =0 at the tube wall , 2.7

¢ =(2m)"" at the tube wall .

The total stream function ¢ is considered to be made of two parts, the steady-state and the
time-dependent part i.e.

$(r,x, )= F@r,x)+ ¥, x,1). (2.8)

Daniels and Eagles derived the steady-state stream function equation for flow in tubes of
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slowly varying radius by defining the boundary as r = H(z), where z = ex and € is a small
parameter. It is convenient to define a new variable n by

r

n= HG)® 2.9

The steady-state stream function (7, z) was expanded as follows, since the boundary
conditions do not contain e,

¥ =o(n,2) + € h(m, 2) + . (2.10)

Substituting into the steady-state equation and defining ¢, = F(7, z), the O(1) equation for F
becomes

H(F)= ,\<4 % (;717 (F,)" % F,,F,m) + F,,(% F.— —nl—z F,,z>
cr(e i 2n)). e
where A =€R and
4 3 2

fon_“_%%+%%—%%’ (2.12)
with boundary conditions

F=0®?) asn—0,

F=(Q2m™"' atn=1, (2.13)

F,=0 atnp=1.

The problem for F is called the slender tube problem and will constitute our basic flow.
For exponential tubes with H = e“*, where a is a constant, a solution independent of z is
allowable and we obtain the nonlinear ordinary differential equation (1.1) with G defined by

1
=—F

i (2.14)

The DE flows are not just small perturbations of Poiseuille flow, but the first constitute a
family of flows containing not only Poiseuille flow but also flows with inflexion points and
with regions of reversed flow.

3. Disturbance equation

It is known that Poiseuille flow is stable to small axisymmetric disturbances for all Reynolds
numbers, the observed instabilities being attributed to finite amplitude effects. Many slender
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channel flows have been shown to be unstable for sufficiently high values of the parameter
vy=AH'/H. A similar behaviour was expected for slender tubes.

To study a small disturbance ¢ to the basic steady flow F we superimpose the disturbance
on the basic flow so that the total stream function is given by

¢ =F(n,z)+¥(n,x,1). (3.1)
Substituting ¢ into equation (2.5) and linearising we obtain to O(1) the disturbance equation

2 2
Hn’¥,  +H%'¥,, +0’F¥, +H7'FY,

—H'n 2q, + (—nannn +3F, )Y, —nE Y, — 3EY,

XXX

= —(n o F2HY A H'YY, - 2HY, W+ 3, —3T), (3.2)
with boundary conditions
Y(1,x)=¥,(1,x)=0, (3.3)
and
w(0,x)=¥,(0,x)=0, (3.4)

is the regularity condition at the center. Note that the coefficients of the equation will now
vary slowly with z in view of the slow variable z = ex. The coefficients of the disturbance are
independent of time, it contains time only through the derivatives with respect to ¢.
Therefore we look for constant frequency solutions of the form

¥ =¢(n,z)e® PP+ CC., (3.5)
where
e K@), (3.6)

C.C. is the complex conjugate and
=00 +edP +e2pP +epP 4., 3.7

Substituting the solution (3.5) into equation (3.2) we obtain to O(1) the equation

(2@ -ar-ig((c-2)w-ar-2(Z) )]s =0, (3.8)
where
R=R/H, w=BpH’, g=KH, (3.9)

are the local Reynolds number, frequency and wave number respectively, and
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The boundary conditions on ¢ are

b=¢ =0 atn=0,

¢=6¢,=0 atn=1. (3.11)

Equation (3.8) represents a sequence of differential equations of which the O(1) equation
is the familiar Orr-Sommerfeld equation. We shall be concerned mainly with the solutions of
the Orr-Sommerfeld equation written here as

(L - g6 - igr((G - 2) .~ 4) —n(Z) Jo =0, (3.12)

with boundary conditions

$@=¢PV=0 atn=0,
¢ =¢"=0 atn=1. (3.13)

In other words we shall be using the usual quasi-parallel assumption for studying the
stability, and to obtain this approximation we must treat R in the disturbance equation as
O(1), even though the base flow was derived on the basis of R = O(e'). This feature is
common in most quasi-parallel stability analysis but it is argued in Eagles & Weissman that
the method is allowable, and produces accurate results at least for channel flows.

4. Orr-Sommerfeld equation

The solution of the Orr-Sommerfeld equation for specified real @ and R gives a complex
eigenvalue g and a complex eigenfunction. In general, the equation will have four linearly
independent solutions, so that

¢(0)=A1¢1+A2¢2+A3¢3+A4¢4 (4.1)

where A, are arbitrary constants and ¢, are independent solutions. A series solution of
(3.12) enabled us to eliminate immediately those solutions which are not regular near the
center of the tube. A linear combination of the remaining solutions yielded

¢(0)=A1¢1 + A0, (4-2)

By applying the boundary conditions (3.13) we obtained two homogeneous equations for the
constants A, and A,. For a non-trivial solution to exist the determinant of the coefficients
A, and A, must vanish, leading to

FR, », ) = ¢,(1)3(1) — $1(1)¢,(1) =0. (4.3)

The eigenvalues g must be determined for selected real positive values of R and w. If
q = q, +iq;, q, determines whether or not the basic flow is stable to small disturbances. If g,
is positive the flow is considered to be stable. If it is negative the flow is unstable. The case
g; = 0 indicates neutral stability. In general a number of types of modes are possible each
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with a spectrum of eigenvalues, (See Drazin and Reid [7]). Searching for the least stable or
unstable eigenvalue is by no means an easy task.
On expanding equation (3.12) we obtain

(*D* ~20°D* + (3 — An®W?D? + (=3 + An’mD + (B +igRUm*)¢ @ =0, (4.4)

where

A=2q2+iqR(G—%),
(4.5)
4, .3 w
B=gq +1qR(G——),

q
GI
e
K n

with boundary conditions ¢*, qbf,o), regular at n =0 and ¢'”(1) = qbf,o)(l) =0, on the walls.
The velocity function G(n) was defined in (2.14) for the DE profiles. The following
alternative form from Eagles and Muwezwa [3] was more convenient to use for the series
solution in powers of n which will be used for small values of n to start the Runge-Kutta
Scheme;

8
G=2 2 (1) kg™ 7, (4.6)
U=8 21 k(k — 1)(k — 2)g (= 1) 'p**, (4.7)

where (—1)**'g, are the coefficients of n°* in the expansion of F.
Equation (4.4) is an ordinary differential equation which may be solved by the Frobenius
method. Let

60 = 20 Antr. (4.8)

On substituting the series into (4.4) we obtain a series solution with four arbitrary constants,
¢ @ =A 1+ )t A @ )+ AW )+ Ay(n’logn + ) (4.9)

The boundary conditions at the center of the tube require that A, and A, are both zero. The
appropriate solution that satisfies the boundary conditions is given by

¢(0) :A1¢1 +A2¢Z , (410)
where for small values of 7

- Z_L 6+—1 (M*'l—P )8+.. 4.11
¢, =n 192Q77 1152 ] Qm ) (4. )
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8 1
¢ =n" + gy P’ + gz (PP Q- Nm" o (4.12)

P=24%+ iqR(Zgl - %) ,

4,.3 w
=q +i R<2 - —-) ,
Q=q +igR\2% ~3 (4.13)
M =4iqR(g,q" — 12g,) ,
N =igR(32g,) .

This series was used to calculate the starting values for the Runge-Kutta integration scheme.
The fourth-order Runge-Kutta routine in double precision was used for all calculations to
minimise both truncation and roundoff errors. A step length of 1/20 was used throughout
with some numerical checks made on a step length of 1/40.

5. Numerical solution

The Orr-Sommerfeld equation was considered in the form

n'¢" = p" — 1y, d" — 26" = y36 . -1
where

y,=3— An*,

Y2= Y1,

y,=(B +igRU)n* . (5.2)

The equation was integrated in double precision from 0.05 to 1 in view of the singularity at
n =0, the series solution (4.10) being used up to 5 = 0.05. For the solution ¢ = A, ¢, +
A,d,, the computer considered two stages initially to obtain two independent solutions. The
stages are: A, =1, A,=0and A,=0, A,=1. Later an attempt was made to satisfy the
boundary conditions at 7 =1. At each stage integration proceeded using a fourth-order
Runge-Kutta procedure evaluating ¢, ¢', ¢”, and ¢" until » = 1. These values were stored.
The stored values were used to obtain the eigenvalue relation.

F(R, w, ) = $,(1)p5(1) — $1(1)¢,(1) =0. (5.3)

For fixed values R and w, the eigenvalues of ¢ must be found by searching iteratively for the
zeroes of F. In order to effect the procedure we needed the values of R, » and needed a
good estimate of q.

Although the above procedure is simple its numerical implementation can lead to serious
difficulties especially when R is large. The difficulty arises from the fact that although the
solutions ¢, and ¢, are numerically satisfactory near n = 0, they both contain some multiple
of the rapidly growing viscous solution and causes loss of linear independence near n = 1.



240 M.E. Muwezwa

One of the methods of overcoming this difficulty, proposed by Nachtsheim [8], is based on
the method of matched initial-value problems. In this method, in addition to forward
integration from 1 =0, a backward integration is also made from n» =1 and the eigenvalue
relation is then obtained by matching the results at an interior point of the interval, e.g. the
midpoint. Other methods for dealing with this difficulty include filtering as in Kaplan [9].
In the present study R was first kept reasonably low at R = 40 and the frequency was fixed
at w =1. The search was made by plotting contour lines F, =0, F,=0 in the complex
g-plane, where F, and F, are the real and imaginary parts of F. Any intersection of the
contour lines F, =0 and F, = 0 indicate the approximate location of a root. A typical contour
plot is shown in Fig. 1 for the first and fourth quadrants. The approximate root found in this
way was used as an estimate for the eigenvalue g. A more accurate value was obtained by a
root finding routine based on successive linear interpolation. In the range —10 <g, <10 and
—4 =< ¢, =<4 no unstable roots were found for R=40, w =1 at both y=0 and y=6. Two
stable roots were found in the first quadrant, of which the least stable root is shown in Fig. 1.
The second root was also confirmed by an independent program used by Eagles (Private
communication). The roots were determined by the root finding routine at y =0, R =40,

2.0

8.8
8.4

3.0

-2.20L

Fig. 1. Contour plot of least stable eigenvalue for y=6, R=40 and w =1. —F,; —F,.
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w =1 as g, = (1.74916, 1.32565) and ¢, = (1.82435, 3.34520). In the next section we look at
the behaviour of the least stable eigenvalue as R, w and +y are varied.

6. Least stable eigenvalue

We next considered values of y > 0. The contour plots and the root finding routine found no
unstable eigenvalues in the region —10<gq, <10 and —4<gq, <4 for R =40, » =1 at various
values of y up to 6. Extensive checks were made on the programs and the contour plots are
quite reliable in revealing possible locations of the eigenvalues. The eigenvalues found in the
first quadrant were also confirmed by an independent program.

An alternative to finding an eigenvalue with ¢, negative was to study the behaviour of the
least stable eigenvalue as y, R and o are varied. In Fig. 2, we show the variation of the
eigenvalue with y at R =40 and R = 60. The eigenvalue becomes less stable with increasing
R and y as expected. However, this trend slows down with increasing R and exhibits a
tendency to level at about R = 400. This behaviour is well indicated in Fig. 4 where g; begins
to level around R = 210. A scatter diagram of the eigenvalue at various values of R is given
in Fig. 3. It is interesting to note that the least stable root remains stable at Reynolds
numbers as high as R =450 at y =6.6.

The variation of g, with w is shown in Fig. 5. Despite that the changes are made at y = 6.6
for R =200 and R =300, the eigenvalue remains stable. The results given are merely a

.40
.30

. 201

.00 : . : L .

Fig. 2. Variation of ¢, with y at R=40 and R =60 for v = 1.
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Fig. 3. g, at various values of y and R, w =1.
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Fig. 4. Variation of g, with R for y =6 and = 1.

section of an extensive study which was made on similar lines. No evidence was found of
roots with negative g, for ~6<y <6, 0<R<500, and O0sw <1.

Conclusions

The stability of the DE profiles has been investigated by quasi-parallel theory. All cases
investigated were stable, but stability decreases with increasing values of y and R. Contour
plots were used in the search for eigenvalues in the complex g — plane. Two eigenvalues
were found at y =0, R =40 and w =1 of which the least stable is g = (1.74916, 1.32565).

Stability tests were carried out on g by varying v, R and w. No instability was found for
ly]|<6, R<500 and @ <1. In Fig. 2 the variation of g, with vy at fixed values of R, shows
that stability decreases with increasing values of v and R. As a result one would have
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Fig. 5. Variation of g, with w at y =6.6 for R =200 and R = 300.

expected the root to be unstable if ¥ was fixed at y =6 while R was increased but this was
not the case. Instead the root remained stable even for R as high as 260. The variation of g,
with w at y=6.6 for R=200 and R=300 is an interesting case. Here the curves are
parabolic and symmetrical about g,-axis, showing that for fixed R the root becomes more
stable as w increases in the positive direction and decreases in the negative direction.
Nevertheless, stability still decreases with higher values of R even though the eigenvalue
does not become unstable.
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